直流無刷電機換向方法:霍爾效應傳感器、編碼器或旋轉變壓器
直流無刷電機(簡稱 BLDC電機)是一種采用直流電源并通過外部電機控制器控制實現(xiàn)電子換向的電機。
在深入探索 BLDC電機反饋選項之前,先了解為什么需要它們至關重要。BLDC電機可配置為單相、兩相和三相;其中最常用的配置為三相。相數(shù)與定子繞組數(shù)相匹配,而轉子磁極數(shù)根據(jù)應用需求的不同可以是任意數(shù)量。 因為 BLDC 電機的轉子受旋轉的定子磁極影響,所以須追蹤定子磁極位置,以有效驅動三個電機相。 為此,需使用電機控制器在三個電機相上生成六步換向模式。 這六步(或換向相)移動電磁場,進而使轉子永磁體移動電機軸。
通過采用這種標準直流無刷電機換向序列,無刷電機控制器即可利用高頻率脈寬調制 (PWM) 信號,有效降低電機承受的平均電壓,從而改變電機速度。 除此之外,這種設置通過讓一個電壓源用于各種各樣的電機,大大提升了設計靈活性,即使直流電壓源大大高出電機額定電壓的情況也不例外。 為了讓此系統(tǒng)保持相對于有刷技術的效率優(yōu)勢,在直流無刷電機和控制器之間需要安裝非常嚴格的控制回路。 反饋技術的重要性就體現(xiàn)在這里;控制器要能保持對電機的精確控制,它必須始終掌握定子相對于轉子的確切位置。預期和實際位置出現(xiàn)任何非對準或相移可能會導致意想不到的情況及性能下降。針對直流無刷電機換向可采用許多方式來實現(xiàn)這種反饋,不過最常見的方式是使用霍爾效應傳感器、編碼器或旋轉變壓器。另外,某些應用也會依靠無傳感器換向技術來實現(xiàn)反饋。
位置反饋
自直流無刷電機誕生以來,霍爾效應傳感器一直是實現(xiàn)換向反饋的主力。 因三相控制僅需要三個傳感器且單位成本較低,所以單純從BOM成本角度來看,它們往往是實現(xiàn)換向最經(jīng)濟的選擇。電機定子中嵌入了檢測轉子位置的霍爾效應傳感器,這樣就可以切換三相電橋中的晶體管來驅動電機。三個霍爾效應傳感器輸出一般標記為 U、V 和 W 通道。 雖然霍爾效應傳感器能夠有效解決 BLDC 電機換向問題,但它們僅僅滿足了 BLDC 系統(tǒng)一半所需。
雖然霍爾效應傳感器能使控制器驅動直流無刷電機,但遺憾的是,其控制僅限于速度和方向。 在三相電機中,霍爾效應傳感器只能在每個電循環(huán)內提供角度位置。 隨著磁極對數(shù)量的增加,每次機械轉動的電循環(huán)數(shù)量也增加,而且隨著 BLDC 的使用變得更加普及,對精確位置傳感的需求也由此增加。 為確保解決方案穩(wěn)健且完整,BLDC 系統(tǒng)應提供實時位置信息,從而使得控制器不僅可以追蹤速度和方向,還可以追蹤行程距離和角度位置。
為滿足對更嚴格位置信息的需求,常用的解決方案是向直流無刷電機添加增量式旋轉編碼器。 通常,除霍爾效應傳感器之外,還會在相同的控制反饋回路系統(tǒng)中添加增量編碼器。 其中霍爾效應傳感器用于電機換向,而編碼器則用于更加精確地追蹤位置、旋轉、速度和方向。 由于霍爾效應傳感器僅在每個霍爾狀態(tài)變化時提供新的位置信息,所以其精度只達到每一電力循環(huán)六個狀態(tài);而對雙極電機而言,僅為每一機械循環(huán)六個狀態(tài)。 與能提供分辨率以數(shù)千 PPR(每轉脈沖數(shù))計的增量編碼器(可解碼為狀態(tài)變化次數(shù)的四倍)相比,兩者均需的必要性就顯而易見了。